

Wheat Straw

REFERENCE MATERIAL

Pedigree

Location: Jefferson County, ID

Class: Classic Hard White

Harvested: 2014

Received at INL: 2015

Sample Preparation: Ground to pass through a 2-inch sieve using a Vermeer BG480 grinder followed

by a 1-inch sieve using a Bliss Hammermill

Composition

Table 1. Chemical composition^a of Reference Wheat Straw

%Structural Ash	%Extractable Inorganics	%Structural Protein %Extractable Protein		%Water Extracted Glucan ^b
5.50	3.37	3.07	1.19	1.56
%Water Extracted Xylan ^b	%Water Extractives Others	%EtOH Extractives	OH Extractives %Lignin	
0.92	4.76	2.76	16.27	32.24
%Xylan	%Galactan	%Arabinan	%Acetic Acid	%Total
16.95	1.60	3.17	1.70	95.05

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate, and calorific values for Reference Wheat Straw (reported on a dry basis)

Proximate ^a			Ultimate ^b						Calorimetry ^c	
%Volatile	%Ash	%Fixed Carbon	%Hydrogen %Carbon		%Nitrogen	%Oxygen	%Sulfur	HHV	LHV	
77.04	9.07	13.89	5.90	45.02	1.06	38.82	0.12	7742	6333	

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile. Elemental sulfur content was determined using ASTM D4239-10, and oxygen content was determined by difference

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

Elemental Ash

Table 3. *Elemental ash composition^a of Reference Wheat Straw*

%Al as Al ₂ O ₃	%Ca as CaO	%Fe as Fe₂O₃		%Mg as MgO				%Si as SiO₂	%Ti as TiO₂	%S as SO₃
2.77	10.83	2.99	15.45	2.69	0.07	1.16	2.15	58.16	0.11	2.34

^aDetermined as described in ASTM standards D3174, D3682 and D6349

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Wheat Straw determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time. The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Dr. Garold Gresham at garold.gresham@inl.gov or 208-526-6684.